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1. Introduction

Let (X, Y), (Xi, Y1), (X 2, Y2 ).... be a sequence of independent, identically distributed, bi-
variate randoiii variables with joint probaility deusity fuanct ion f(x, y). In tis paper we coiisider
the seqluentid ,stilnation of zeros Aid extreiia of ir(z) = E(YIX = x) using a Conlinatiol of

the nonparametric kernel and stochaw.tic al)lroximalt ion methods. The structure of our sampling

scheme is dilfferent from the one considered by lRohbiis Land Monro (1951) since the experimenter,
observing the bivariate data, has no control over the design variables {X,}, as is assumed in

classical stochastic approximation algorithms.

The proposed sequential procedure is based on the principal idea of nonparametric kernel

estimation of re(z), i.e. to construct a weighted average of those observat ions (X,, I) of which

X, happens to fall into an asymptotically shrinking neighborhood of x. The shrinkage of such a

neighborhood is usually parameterized by a seqtence of bandwidths h,, tending to zero, whereas

the shape of the neighborhoods is given by a real kcrnte functC ,n K.

Motivated by classical procedures we define the following sequential estimator of a zero of

M7,

(1) Z = 2, -anh 'K((Z. - X,,)/h,, , 1.

*Her, Zi denotes an arbitrary starting random variable with finite second moment and {an} is
a Sequence of positive constants tending to zero. I fact, the sequence { Z. } will converge under

our conditions to the (unique) zero of

(X) f yf (x, y)dy = m(x)fx (z),

where fx(z) denotes the marginal density of X, but an assumption about fx ensures that the

zero of the two functions m and ri is identical.

Under mild conditions we show consistency (almost surely and in quadratic mean) and

asymptotic normality of {Z}. An asymptotic bias term (depending on the smoothness of n)

, shows ip, if the bandwidth sequence tends to zero at a specific rate. Fixed width confidence

intervals are constructed, using a suitable stopping rule based on estimates of the variance of

the asymptotic normal distribution.

Our arguments canl be extended to the problem of estimating extremal values of the regres-

.ion function m. Note that m = fi/fx and therefore rn' =' /fk, where

T()= fX(X) f T ahx~f~

i ld'r a suitable assumption the problen of finding an extremum of m is equivalent to finding

.1 .[il ue) zero of the function r. So it is reasonable to apply a procedure similar to (1). Addi-
tioi;U difficulties turn up since fx has to be estimated separately. We propose to perform the

estimation by an additional i.i.d. sequence {X,} with the same distribution as X. Define ]

Avn I-: d.i C ,.,-
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(2) Z..+1 = 7,,- -a.h.-K((Z' - .'..)Ih,.)K'((Z, -X.)lh.)Y.

+,,.h-K'((Z, - X.)/,,,)K((Z,' - X.I).)I, n >

We shall prove that {Z,} is consistent and asymptotically normally distributed. Fixed

wid h confidence intervals are computed by the same technique as for { Z,, }.

If we knew fx the algorithm (2) would simplify, the additional {X.} are obsolete in this

ca.se, here we propose

(3) Z', +I = Z - a. h K'((Z', - X,)/h,)Y,, fx(Z, )

+a,,h,'K((Z," - .\)/h,)Yfk.JZ,), -> 1.

The additional difficulty of estimating simultaneously fx didn't occur in the case of esti-

inatin.g zeros, since the problein for m could be transferred to the equivalent problem for th,

which does not involve fX. I practice the adti ioal i.i.d. sequence { X, } could be constructed

by saIIIhnl ig il pairs and diiscarding the Y olst-rvations of one element. This results in some

loss of etliciency but makes the practical application possible with the data at hand. Another

proposal that we would like to iiake is related to the boot-strap. From the first N observations,

a denisity estimate ]x of fx could be constructed and then the algorithm (2) could be started

W ith {X,} distributed with density fx. A third possibility is to plug in fx into the algorithm

(3). We (lid not investigate the last mentioned procedures.

An alternative way of defining an estimator of the zero of the regression function m could be

to construct an estimate of t he whole function ata( then to empirically determine an observed zero

as an e#stirnate. This procetdure would be time co7)sunJiing in the case of sequential observation

of the date, since for every new observation the whole function has to be constructed wherea;s

our procedure just keeps one number in meniory and updates that number due to the formal

presription (1). Also in cases where an enormous amount of data has to be processed, an estimate

of a ,ero based on the estimate of the whole regression function seems to be inadvisable since
all the data has to be stored in the memory at a time.

Related work was done by Revesz (1977) arid Rutkowski (1981, 1982) who applied stochastic
pa,,r(.xiiiation imethods to the estimation of m at a fixed point. Our derivation of fixed width

-'-,diice intervals was inspired by the papers of Chow and Robbins (1965), McLeish (1976)
S.. Stur,'" 1980). The author last neltioned used in the field of density estimation the kernel

.-t r:.iti ii technique that introduces a localizinig effect which makes classical miethods, such as

\,.ti,.r' (1966), app)licalvl.

l'n,. rest of the paper is organized as follow.. Section 2 comtainus tle results and gives

ti, ,,:isteiicy proof for {Z,}. In section 3 we present the re.sults of some simulations and an

apl i at on f of {Z, } to sone real data. In the last section we give the rest. of the proofs.
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2. Results

A crucial assumption that makes the problem identifiable through in resp. r] is the

following.

(Al) The marginal density fx of X is pomitive.

The speed of convergence of (a.) and {h,.) is controlled by

(A2.1) au=oo , a,,hn < o
n=l n=l

a 00

(A2.2) 2h,2  < oo

00

(A2.3) ah - < 00

n . I

The zero 0 0 of rn(x) (and of in(x)) is identified by

(A3) inf (x - Oo)vh(x) > 0 for all > 0.

Smoothness of in is guaranteed by

(A4.1) fh is Lipschitz continuous;

(A4.2) rn is differentiable in a neighborhood of 00 such that

,n'(00) > 1/4;

(A4.3) ?h is twice continuously differentiable.

The kernel function K has to satisfy the following conditions.

(A5.1) K is bounded and

f K(u)du= 1,f uK(u)du =0, fu 2 K(u)du <0o

fA5.2t K is diileretiable and

lUr IuK(u)l = 0, lul K'2(u)du < o

3
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(A5.3) K is twice differentiable and

1ira luK'(u)l 0,1 ul K"2(u)du < oo.

The joint density f(x, y) has to be smooth in its first argilnent.

(A6. 1) if(x, y) - f(z, )l : Ix - z 91 (y) such that f(y 2 + 1)g1 (y)dy < oo.

(AG.2) -)f(x, y) is continuous and

f, f("fyY) -fl(,,Y) U U-V lY2(Y)

such that f(lyl + 1)g2(y)dy < oo.

M )ilent assmlp 'tions are

(.47) EY 4 < oo and supE(Y2jA = x).

We have split u l , tlhe Ssulniptions into several subparts since we will use the subparts

septrately. The consistency of {Z,) is shown in

lhoren 1. Assiiuie(Al),(A2.1),(A2.2),(A3),(A4.1),(A5.1),(A7). Then {Z,,} converges to

H,) almost surely and in the quadratic mean.

Since the proof of this theorem is very simple and exemplifies the combiniation of the kernel

nictliod together with stochastic approximation arguments we would like to give it here. The

proofs of the following results are delayed to section 4.

"'rite
Z,+1 = Z. - a.,rn(Z,,) + aljln

V,, = it(Z,,) + K#A(Z -.

where K,(u) = h-'K(u/h,,).

Let 7, {ZI, Z2 ... ,Z,}. Condition (M.1) implies that
~~E(v,,.,.) = O(hn) a...

E(V) = O(E(Zn - 0 )2) + 0(hK2 ).

, :,vc that with (A3) and a Lipschitz constant L,

(z,,- 10)2 = (7 - (,,)2 2,, 2 (z.)(z, - eo)
+ -,/h(zi)+ 2at,,V(z - Z- 0,, (z,)

2 i-2

+ (al(Z)( + -20o)n + a;,6

.'. + 2,av,,(z,, -Oo - a,,,h(Z,,)).

,.° .
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Hence by (A7),
E((Z. - o)21,) (1 + 1,L!L)(Z. - 00)2

. + O(h,,,(l + a,.L,.) IZ. - Ool

+ ",,(V, B)
i~! 0 (+ 0.L)(7,n - Ho) 2 + b".

w here

A= O(h -2 a2 + h ,,a, + an),v

b,, = O(h,,,, + ht-2a2)

if we use the Simple inequalities

IZ, - (0I 1<1 + IZ. - O()

E(V,2,.) _ 2,h 2 (Zn) + O(h - - 2 ) supE(y2 X = X)

Note that by (A2.1), (A2.2) Zf/,,; E,, < O.

The assertion follows now from Venter (1966), Theorem 1. Nixdorf (1982), Theorem 1.1.2 has
given a corrected vcrsion.

The a-symptotic normality is shown in

Theorem 2. Assume (A11), (A3), (A4.2), (4.1.3), (A5.1).

L1_t a, = n - 1 , h n-=,1/5 < -y < 1/2.

Th en

n 2T{Z, - Oo} - N(b(y),a 2 (7 ))

where
b(-y) = 0 if 1/5 < -Y < 1/2

= ? ( 0 ) f u 2K(u)du/(2rh'(00 ) - I + y) if 7 1/5;

f ,

7/ K 2 ] Y 2f (eO, y)dy/(2'() - 1 + -')

Fixed width asymptotic confidence intervals for the unknown parameter Oo are constructed via

.r iinatoi of b(yI) and o2(-i).

Es'inators of f y2 f(O,y)dy, ?J'(Oo),i-n (Oo) are

5
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(4) Sl= n- j.(j-X)Y2

(5) S2,, n- K'. (Z. - X.) I

~I+1

S 3 ,& n E K(Z. - x)I*

respectively.

An estimator for the a.sym)t.otic variamce at2 (-y) is therefore

.n =f K2 S,,,/(2S.,, - 1 + -y) if 2S.,, - 1 -y > 0,

= 0 else

So the following stopping rule seems reasonable.

(6) N(d) = inf {n E IN I -",, + n - < n 1 2/Z,,/.

wh,'re Z,./2 is the (I - k/2)- quantile of the standard normal distribution.

The fixe(i width confidence intervals are constructed via

Theorem 3. Let a, = n-, h,, = n- ', 1/5 < -y < 1/3 and assume (Al), (A3), (A4.2), (A4.3),

(A5.1), (A5.2). Then if N(d) is defined a in (6) for some 0 < a < 1, as d - 0

N(d) Y {ZNd) -
0

0} -. N(b(-I),a 2 (-y)).

In the case 1/5 < -t < 1/3 an asymptotic confidence interval of fixed length 2d and asymp-

totic coverage probability I - a is given by

[ZN(d) - d, ZN (d) + d).

1' -y 1/5 the bias can be estimated by

b f u2K(u)duS,,/(2.S, - 1 + "j).

''Then with 11,, = Z, - n b, an asymptotic confidence interval is given by

IHN(d - (, jfN(d) + dl.

-%

% % %
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Remark 1. The range of -y had to be reduced to 1/5 < y < 1/3 since otherwise S 2 .

would no longer be a consistent estimator of f'( 0o).
IlerRmark 2. It will be seen in the proof of Theorem 3 that, ;is d - 0, N(d)/b(d) - I

-'.' almost surely where 6(d) = inf{n E IN I a 2 ('Y) < I' d 2
/z,,/2). Therefore N(d) exhibits the

following limit behavior,

d 2/(1-') N (d) -- (72 (,,))1 /-) Z2/ (

as d - 0.

The analysis of the sequential procedure {Z',} is quite analogeous to that of {Z,, }. we define

the (unique) zero of F as eM.

Theorom 4. Assume (Al), (A2.1), (A2.3), (A5.1), (A5.3), (A6.1), (A7) and let (A3), (A4.1) be

fulfilled with i in the place of in. Then {Z,,} converges to OM almost surely and in the

quadratic mean.

4 The next theorem gives the asymptotic normality of { Z,}.

'- Thor'm 5. Let a,, = n-1 and h, = n- ', 1/6 < - < 1/5 thn unlder (Al), (A5.1), (A5.3),

JA (AG.2), (A7) aid___ (A3), (A4.2), with i in the place of ?4.
Then

71 {Z, -Zn } --. N(O,a,%('-Y)),

where

.a,(Y) = fX(EM) fY f(M,y)dyf K2 (K') /(2F'(0 ) - I + 4-y)

.. emark 3. For simplicity of presentation we didn't arrange for a wider range of -y such

that an asymptotic bias term occurs. If F is twice continuously differentiable then the range of

allowable exponents can be extended to 1/8 < -1 < 1/4. The discussion would be in analogy to

Theorem 2 with F in the place of rh.

Estimators for the numerator and denominator of a2(-y) are constructed in the following
"'2 way.

% *1

, : n Kh. (Zi - X)n
-  h, (Zi -X,)1,

2

,- i1k (,. timator for fx ((")) f y 2f(E,,,, y)dy, where'(.;s

S.=n K.Z, - X,), "I h. -

S-n-  K h.Z( - Xj)Y1' n -  K, (Z, -

%I 7
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converges tinder our assumptions to T1eM, alnost surely. Define

- f K 2 f(K' )2S /(2.;2. - I + 4,1)

N (d) = (Y2 E LN + S,I± < " I 
21-2-'Z,,',,.

Then para lel to 'The oremi 3 we have

'heorem 6. Let a,. = n I and h,, = < , -/ < y < 1/5, and let the condil ions of Theorem 5

h' fulfilhd. Then, as (I - 0

N'(d)l/22)Za Om } NZ/ (0, a.mf ')

'ii.
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3. Mont* Carlo Study and an Application

In this section we report the results of a Monte Carlo experiment comparing the performance
of our sequential procedure when some of the invOlV(l parameters are tuned at different levels.
We also report aii application of the algorithm (1) to som1e reial data.

The bLsic experiment to assess the accuracy of lheorenm 3 consisted of 200 Monte Carlo
replicationIs with the mnnbers N(d), ZN(,I) and S ,(,0 to be reported. Th'e joint probability den-

-,." sity function f(x, y) that we used was f(x,y ) = i) o((y - io(x))/o.), W the probability
dhensity function of a standard normal distribution and r,(r) = -a{_( - X)2 - 1/4} for a = 4,8
was the regresssion curve. We report the result for Z = 0.15 ('Fla;ble 1) and for Z1 = 0.2 (Table
2). The paranieter or was set to o = 0.05. The zero th;t was to be eVSt.i1i;Lted was 00 o 1/2

0 and two different valuies of d and a. were fixed, naamely d = 0.05, 0.1 and a. 0.1, 1.0. As the
kernel K we have chosen the Epanechnikov kernel K(u) = 3/4(1 - u2 ) for JI - I and K(u) = 0
for Rl > 1. the sequnc'e of bandwidths was se't to h h,, = 7-, y = 0.21. In Table I the
results for the starting point Zi 0.45 are shown. The figures of Tablt I indicate that the fixed

* ;accuracy result

Table 1 abont .here

.ivn in Theorem 3 yields a good approximation of 0 0 even for ,d 0.1. This is seen from the

counts in the Zv(d)- column. It is indicated there how inany' times (from 200 Monte Carlo
trials) the true parameter (0 = 1/2 was in the confidence interval [Zv(.t) - d, Z,(d) + d]. As
a measure of spread we added the quantiles Q95 and Q5 in the third and fourth column of

each entry. A small paradox occurs when we compare the fig-ures for different values of a. It
is expected that the procedure (1) stops earlier with a = 8 than with a = 4, since the higher
derivative in the zero should speed up the convergence of {Z,,} to O0 . In both Table I and Table
2 it is seen that the average of the stopping times

Table 2 about here

A"r 200 Monte Carlo runs) is considerably higher for a = 8 and o. = 0.1 than for a = 4 and
(7. C) 1. This effect is due to the crude approximation var(YIX = X): a 2, X (o, as can be seen

fr. :n tine fignres for Sv(d). In the case of a = 8 the statistic SN(,d) considerably overestimates
the true wsymptotic variance a(3'). For comparison we list some correct U(-y) = a(a., a, -). For

F osot:,,, 0(0.1,4,0.21) = 0.0(X)83 whereas o(0.1,8,0.21) = 0.00039.

In a small application we took the sequence of random variables {(Xi, I') }, X. =age, Yj =weight

A,,%
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of female corpses) which was gathered from 1969 to 1981 by the Institute of Forensic Medicine
of Heidelberg. It is an interesting question in forensic medicine to estimate the mean age from

the weight of unknown corpses. We restricted our attention to the ages between 0 and 20 years
in order to fulfill aLsu~mption (A3). We put m0 z 40 kg, and we applied the I)roceldirc (1) anid
'ldled with differeit starting values ZI at ZN(d) = 11.6 years and N(d) = 563, for d = 0.1 and
N(d) = 221 for d = 0.2(Z 1 = 0.4). A plot of tie first 732 dLta pairs, restricted to ages between
( aod 20 years, should illustrate the accuracy of ZN(d) (Figure 1).
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4. Proofs

The theorems are proved by a functional central limit theorem given by Berger (1980), who

extended a result of Walk (1977), that inade, it applicable in our setting. L[enima I dehscrilbs

the asynptotic lehavior of

(7) Wn(t) =+ ,,-i/, -1t/,D{I?,,I+1 -(I,,f}, ) < t < 1,

e.., where

R. = k/Ik (Z4 00) - b(y)J, k E N.

IL1emina i. Let. the con(litions of Theorem 3besatislied, then ,(t), wid(lined in (7) converges

weakly in CIO, 1] to the GalussianI process

(8) G(t K" I Y2 f(0(, y)"dy 1 (2i ) 2dW(tu), 0 < t < I,, . = f~eu fdy °.I

where W is the standard Wiener process starting at 0.

" Pr,,,f. I),'fjim"

5,, =  a ,,,..., zn}

z.,,, - 00 = 0 - Dn/n)(z. - 0,) + n , + ,

where

_ = h-'/2 E{K( h )Y.IB.} - h-/ 2 K( h y,::: , .:,h h
7, = n -2 {rn(Z.) - E[Kh(Z,. - X.)YIB.I}

and {B,0 } is a sequence of random variables converging almost surely to Vfh'(0 0 ) such that

B,(Z, - 00) = i(Z,,). Such a sequence exists because vh is differentiable in 0o and Z,- O0
X Ialmost surely by Theorem 1. The assumption on a,, and h. imply that

--'. , 1/2fu2 K(u)dufi"(Oo). Note that E(V,0 B,,P) = 0 and that by (A7) and (A6.1),

E( IB,,) - f K2Jf, wdy, almost surely,

%. E(v,2) = O(1).

Furthermore we' have for all r > 0

ErV; (V ,I ) 5 O(h- P9 > ni,,)

< O(h-2 n - ') = o(1) almost surely.

% 'N'
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The lemma follows now from the generalization of a theorem of Walk (1977) , given by

Berger (1980).

"ie following itina gives an iualogeous result for the Kiefer Wlfowitz typet sequence

(Z,,) dcfined ill (2)

Lemma 2. Let the conditions of Theorem, 6 be satisfied. Define IV,,(t) iLs ill Imma I but with

..- ill the place of ?h and

Rk = kl2 k'' : (Zk - OM).

Ihen W,,(t) converges weakly in C(O, 11 to the Gaussian process

;-(t)= fX(OM) J Y2 ff(0M, y)dy f K2 (K')2 f u(1, 11 )dW(tu), 0 < t < 1.

Proof of Theorem 2. Use Lemma I and evaluate G 1 (t) at t I.

Prooof of Theorem 3. Define the sequence

b(d) = inf {n E LN I <2_() 7,,( /Z

The estimators St,,, S 2,, defined in (4), (5) converge to f y2f(43, y)dy, 74'(0o) respectively. This

entails that, as d - 0,

N(d)/b(d) - 1 ahost surely.

Now apply Lemma 1.

Proof of Theorem 4. Like the proof of Theorem 1.

Proof of Theorem 5. Use Lemma 2 and evaluate G2 (t) at t = 1.

,, Proof of Theorem 6. Similar to the proof of Theorem 3.
.A

4

J.'

-.J.

-'. .



V. References

[1] Berger [19801: A note on the invariance principle for stochastic aIlprvxiuation in a
Hlilb'rt space. Manuscript.

[21 Chow, Y.S. and Rohbins, R. 119651: On the asymptotic theory of fixed- width sequential

confidence intervals for the memi. Ain. Math. Statist. 36, 457 462.

[3] McLeish, R. 11976]: Functional and random central limit theorems for the Robbins-
Monro process. J. Appl. Prob. 13, 148-154.

[4] Nixdorf, R. 119821: Stochastische Approximation in Hilbertriumen durch endlichdimen-

sio ;de Verfahren. Mitt. Math. Sem. GieBen, Ileft 154.

[5] Revesz, P. [19771: How to apply the method of stochastic approximation in the non-
parametric estimation of a regression function. Math. Oper. Statist. 8, 119-126.

J6 Robbins, 11. and Monro, S. [1951]: A stochastic approximation method. Ann. Math.

Statist. 22, 400-407.

[7] Rutkowski, L. [1981]: Sequenti,-d estimates of a regression function by orthogonal series
with applications in discrimination. Lecture Notes in Statistics 8, Springer Verlag,

236 -244.

[8] Rutkowski, L. [19821: On-line identification of time- varying systems by nonparametric
techniques. IEEE trans. Autom Control. 27, 228-230.

[9] Stute, W. 119831: Sequential fixed-with confidence intervals for a non-parametric density
function. Z. Wahrsch. 62, 113-123.

[10 Venter, J.H. [1966]: On Dvoretzky stochastic approximation theorems. Ann. Math.
Statist. 37, 1534-1544.

[11 Walk, H. [1977]: An invariance principle for the Robbins- Monro process in a Hilbert

space. Z. Wahrsch. 39, 135-150.

.J1

% %%

-.

-,,"%,-



-,RV- 7- M P4

6 33

i- LI' L' u' LI u LI' L LII U

o~I - '6.. 0 '.
-L, -3 - .3 LI i ON 0 I 0 11a l cl, ON Z. toJ w~ m

t) as 1 , L _ l% .*rj w % i i

A- M~ A a - - n wA Db L ka An- -

co D. 0n *j 10w X.iP

01 -n 30 l 4 " - C

-.3 C. o. t) LICo' - r

A ('0 ni 0 co i ' a '.o ~ 0 Vi 0 -j tU Li' U' .D
CN 0O 0 00 w ~ (-n L' . -j3 - a' D. 0 .0 ON .r

N.) 0 L, , Z
NIj LI C" LI' w~ m -. Ln LI' j. '0 Lu '

) X. L U W W)3 f

N N

m T

ID L n ON-. -. I' aN a' .Z. C"n %D LP D- M -J a'
UA N) W' A Q -j C, 6-' m N. J '.0 w. ~

-~ 1 Dm 1 4 w 30

0 m 0I LaN -b I -. w'M0 a n rK ) Aj CD4 L

m) -l. -n - (. -i - -)

LZa K) C O A~ a'n fl) '.0K -i m A a' a .

z fi -1 un LA w Ul N 0 C) W X. fl CLp
un - "o j x A. M w . r- tn o C

Cc...................... ........ ............................. ................ ..........

--0-000 % 0- - 00%



4

.3*... .. .

:-: j~ ~4 **~~ 55 *
* * 0 5 4** *~

0g*..0
* * * a ** *.*t **

*~ .**~ *0

. * * * 4 -

~4. 3 .*~. S * -3 S ** *~t. ..
* *4*~

.0 4 !. *.

.0 *~ -w
0 4 4 4 0*. ** *

4 4 *
* *44

* *e~. *
4** 4 4. .

* 4 4 . 3

*4. * *
4 4

*0 * '-N

. .. * .
*54 -

.1'
.4

* 4 4. -

* 444 =
* 4 -~

.4 :-. z
0 .~ C)

4 4 .

* C
* 4

0 3
4 . 4 . Ca

4O4 *~ 0

* E
* Ca

** 4.
S

0 * -0

.4*~ * *r.
.I-s~.

C
* -.. * I

-~ :.~ Ca
4 0

S * .. t
4. -'*1 -~

*0* - * *:..* I
0 1 CC -

4...

t~ * .~a *
N 4-~ Ca

.4.-, *444 *I. I
4 *. I CC

I~
4 

~ 4 * - Ca *~. I- -. 4*
-, ~, ,, '2 '2 '2 '2 '2 -, '2 '2 '2

4' 4 -

44

44* ? ~ ~

0*

13
% 4*0

*



~&! ~ ~ jj~~jb ,a2~'~i- -~"q~ ~UI ~ *.5W . .p -. p -, -~'. .p.

(

A.

S -

I

C.

4

A

.- , I

~*1

4"

4'

S
~ ~--v''r;-v~7 u-js.~ ~ ~'.

4  V~.VV~4 ~ V ~ -- ..- ~.. *a % .'% % -. -. -a *- -.
a_ -- a- ~ - ~. ~ ~ ~4'. 44'?#t ~ ~ ~/ .~-~Z4'~-:~ :~.4:ha~I~

~4L4?*~E~~ ~ ~' r'., ~ .,, 4'


